Preview

Генетика и разведение животных

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Редактирование генома сельскохозяйственных животных

Полный текст:

Аннотация

Эффективные инструменты редактирования генома ZFNs, Talens и (CRISPR / Cas показали свою способность революционизировать молекулярно-биологические исследования с серьезными надеждами на прикладное продвижение результатов. CRISPR / Cas, как эволюционно приобретенная иммунная система бактерий и архей, препятствующая вторжению вирусов или плазмид, была удачно адаптирована для редактирования генома эукариот. Системы CRISPR / Cas в настоящее время подразделяются на три основных типа: I, II и III, из которых тип II имеет относительно простые компоненты и наиболее часто используется для редактирования генома сельскохозяйственных животных. Эта технология была успешно применена на кроликах, свиньях, козах, овцах и крупном рогатом скоте с развитием множества приложений. В частности, редактирование генома у сельскохозяйственных животных может способствовать улучшению продуктивных генетических свойств, улучшению качества различных продуктов животного происхождения, обеспечению устойчивости к болезням или минимизации вредного воздействия на окружающую среду. Важно, что редактирование генома в животноводстве может быть использовано для увеличения частоты благоприятных аллелей с большим эффектом. Приводы или репрессии генов могут использоваться для увеличения скорости, с которой отредактированные аллели распространяются среди популяций скота. Успешное продвижение полезных аллелей в программах разведения животных требует открытия локусов количественных признаков через набор больших массивов данных о вкладе этих локусов в формирование фенотипических признаков.

Об авторе

А. Ф. Яковлев
Всероссийский научно-исследовательский институт генетики и разведения сельскохозяйственных животных - филиал Федерального государственного бюджетного научного учреждения «Федеральный научный центр животноводства - ВИЖ имени академика Л.К. Эрнста»
Россия


Список литературы

1. Geurts A. M., Knockout rats via embryo microinjection of zinc-finger nucleases / A. M. Geurts, G. J. Cost, Y. Freyvert et al. // Science. - 2009. - V.325. - P. 433. DOI : 10.1126/science.1172447

2. Tesson L. Knockout rats generated by embryo microinjection of TALENs / L. Tesson, C. Usal, S. Menoret et al. // Nature Biotechnology. - 2011. - V. 29. - P. 695-696 DOI: 10.1038/nbt.1940

3. Petersen B. Basics of genome editing technology and its application in livestock species / B. Petersen // Reprod. Domest. Anim. - 2017. - V.52. - S. 3. - P. 4-13. DOI: 10.1111/rda.13012

4. Shen B. Generation of gene-modified mice via Cas9 / RNA-mediated gene targeting / B. Shen, J. Zhang, H. Wu // Cell Research. - 2013. - V. 23. - P. 720-723. DOI: 10.1038/cr.2013.46

5. Wang X. Disruption of FGF5 in cashmere goats using CRISPR / Cas9 results in more secondary hair follicles and longer fibers / X. Wang, B. Cai, J. Zhou et al. // PLoS One, 2016. October 18. https://doi.org/10.1371/journal.pone.0164640

6. Barrangou R. Crispr provides acquired resistance against viruses in prokaryotes. / R. Barrangou, C. Fremaux, H. Deveau et al. // Science. - 2007. - V.315. - P.1709-1712. DOI: 10.1126/science.1138140

7. Iliakis G. Mechanisms of DNA double strand break repair and chromosome aberration formation / G. Iliakis, H. Wang, A.R. Perrault et al. // Cytogenet. Genome Res. - 2004. - V.104. - P.14-20. DOI: 10.1159/000077461

8. Gu J. Mechanistic flexibility as a conserved theme across 3 billion years of nonhomologous DNA end-joining. Genes / J. Gu, M. R. Lieber // Dev. - 2008. - V. 22. - P.411-415. DOI: 10.1101/gad.1646608)

9. Yuduan Ding. Recent Advances in Genome Editing Using CRISPR / Cas9 / Yuduan Ding, Hong Li, Ling-Ling Chen // Front. Plant Sci. 24 May 2016. https://doi.org/10.3389/fpls.2016.00703

10. Moehle E. A. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases / E. A Moehle, J. M. Rock, Y. L. Lee, et al. // Proceedings of the National Academy of Sciences of the United States of America. - 2007. - V. 104. - P. 3055-3060. DOI: 10.1073/PNAS.0611478104

11. Jenko J. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs / J. Jenko, G. Gorjanc, M. A. Cleveland et al. // Genet. Sel. Evol. - 2015. - V.47. - P.47-55. doi:10.1186/s12711-015-0135-3

12. Soo-Young Yum. Development of genome engineering technologies in cattle: from random to specific / Soo-Young Yum, Ki-Young Youn,Woo-Jae Choi et al. // Anim. Sci. Biotechnol. - 2018. - V. 9. DOI: 10.1186 / s40104-018-0232-6

13. Lamas-Toranzo I. CRISPR is knocking on barn door Reprod. Domest. / I Lamas-Toranzo, J Guerrero-Sánchez, H Miralles-Bover // Animals. - 2017. - V.52. - Issue S4. - P. 39-47. DOI: 10.1111/rda.13047

14. Shao S. Enhancing CRISPR / Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae / S. Shao , C. Ren , Z. Liu et.al. // Int. J. Biochem. Cell Biol. - 2017. - V.18. - P. 43-52. DOI: 10.1016/j.biocel.2017.09.012.

15. Billon P. CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons / P. Billon , E. E. Bryant , S. A. Joseph et al. // Molecular cells. - 2017. - V. 67. - P.1068-1079. DOI: http://dx.doi.org/10.1016/j.molcel.2017.08.008

16. Li Guoling. Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells / Guoling Li, Xianwei Zhang, Cuili Zhong et al. // Sci. Rep. - 2017. - V.7. article number: 8943. DOI: 10.1038/s41598-017-09306-x

17. Singh P. A mouse geneticist's practical guide to CRISPR applications / P. Singh, J. C. Schimenti, E. Bolcun-Filas et al. // Genetics. - 2015. - V.199. - P. 1-15. DOI: 10.1534/genetics.114.169771

18. Song J. RS-1 enhances CRISPR / Cas9- and TALEN-mediated knock-in efficiency. / J. Song, D. Yang, J. Xu, et al. // Nature Communications. - 2016. - V. 7. - article number: 10548. DOI:10.1038/ncomms10548

19. Gonen Serap. Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs / Serap Gonen, Janez Jenko, Gregor Gorjanc et al. // Genetics Selection Evolution. - 2017. - V.49. doi: 10.1186/s12711-016-0280-3

20. Du S. J. Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth hormone gene construct. / S. J. Du, Z. Y. Gong, G. Fletcher et al. // Biotechnology. - 1992. - V.10. - P.176-181

21. Qian L. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs / L. Qian, M. Tang, J. Yang, et al. Scientific Reports. - 2015. - V. 5, article number: 14435. DOI:10.1038/srep14435

22. Proudfoot C. Genome edited sheep and cattle / C. Proudfoot, D. Carlson, R. Huddart. Transgenic Research. - 2015. - V. 24. - P.147-153. DOI: 10.1007/s11248-014-9832-x

23. Wang K. Efficient generation of myostatin mutations in pigs using the CRISPR / Cas9 system / K Wang, H. Ouyang, Z. Xie et al. // Scientific Reports. - 2015. - V. 5, article number:16623. DOI: 10.1038/srep16623

24. Wang K. CRISPR / Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs / K. Wang, Tang Xiaochun, Xie Zicong et al. // Transgenic Res. - 2017. - V. 9. - P.1-7. DOI: 10.1007/s11248-017-0044-z

25. Crispo M. Efficient generation of myostatin knock-out sheep using CRISPR / Cas9 technology and microinjection into zygotes / M. Crispo, A. P. Mulet L. Tesson et all. // PLoS One, 2015 V.10. DOI: 10.1371/journal.pone.0136690

26. Lv Q. Efficient generation of myostatin gene mutated rabbit by CRISPR / Cas9 / Q. Lv, L. Yuan, J. Deng // J. Scientific Reports. - 2016. - V. 6, article number: 25029. DOI: 10.1038/srep25029

27. Park K. E. Targeted gene knock-in by CRISPR / Cas ribonucleoproteins in porcine zygotes / K. Park, A. Powell, S. E. Sandmaier // Scientific Reports. - 2017. - V. 7. - article number:42458. DOI: 10.1038/srep42458

28. Zhang X. Disruption of the sheep BMPR-IB gene by CRISPR / Cas9 in in vitro-produced embryos / X. Zhang , W. Li , Y. Wu // Theriogenology. - 2017. - V. 91. - P. 163-172. DOI: 10.1016/j.theriogenology.2016.10.025

29. Bevacqua R. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR / Cas9 system / R. J. Bevacqua, R. Fernandez-Martin, V. Savy // Theriogenology. - 2016. - V. 86. - P. 1886-1896. DOI: 10.1016/j.theriogenology.2016.06.010

30. Chin-kai Chuang. Generation of GGTA1 mutant pigs by direct pronuclear microinjection of CRISPR/Cas9 plasmid vectors / Ching-Fu Tu, Chien-Hong Chen // Animal Biotechnology. - 2017. - V. 28. - P. 178-181. DOI: 10.21769/BioProtoc.2321

31. Xiaolong Wang. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR / Cas9 system / Xiaolong Wang, Honghao Yu, Yulin Chen // Scientific Reports. - 2015. - V. 5. - article number: 13878. DOI:10.1038/srep13878

32. Gao, Y. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects / Y. Gao, H. Wu, Y. Wang, et al. // Genome Biology. - 2017. - V.18. https://doi.org/10.1186/s13059-016-1144-4

33. Lillico S. Mammalian interspecies substitution of immune modulatory alleles by genome editing / S. Lillico, C. Proudfoot T. J. King // Scientific Reports. - 2016. - V. 6. article number: 21645. doi:10.1038/srep21645

34. Whitworth K. M. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. / K. M. Whitworth, R. Rowland R., S. Ewen et.al. // Nature Biotechnology. - 2016. - V. 34. P. 20-22. DOI: 10.1038/s41598-017-13794-2

35. Burkard C. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function / C. Burkard, S. Lillico G. E. Reid // PLoS Pathogens. - 2017. - V. 13. https://doi.org/10.1371/journal.ppat.1006206

36. Wells K. D. Genome-editing technologies to improve research, reproduction, and production in pigs / K. D. Wells, R. S. Prather // Molecular Reproduction and Development. - 2017. - V.84. - P. 1012-1017. DOI: https://doi.org/10.1002/mrd.22812

37. Jabed A. Targeted microRNA expression in dairy cattle directs production of beta-lactoglobulin-free, high-casein milk / A. Jabed, S. Wagner, J. McCracken et al. // Proc Natl. Acad. Sci. USA. - 2012. - V.109. - P.16811-16816. DOI: 10.1073/pnas.1210057109

38. Liu X. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows / X. Liu, Y. Wang, W. Guo et al. // Nat. Commun. - 2013. - V.4. DOI: 10.1038/ncomms3565

39. Song Y. Expression, purification and characterization of zinc-finger nuclease to knockout the goat beta-lactoglobulin gene / Y Song, C. Cui, H. Zhu et.al. // Protein Expression and Purification. - 2015. - V.112. - P.1-7. DOI: 10.1016/j.pep.2015.04.004

40. Oishi I. Targeted mutagenesis in chicken using CRISPR / Cas9 system / I. Oishi, I. K. Yoshii, D. Miyahara et al. // Scientific Reports. - 2016. - V.6. DOI: 10.1038/srep23980

41. Monzani P. S. Transgenic bovine as bioreactors: challenges and perspectives / P. S. Monzani, P. R. Adona, O. M. Ohashi et.al. // Bioengineered. - 2016. - V. 7. - P.123-131. DOI: 10.1080/21655979.2016.1171429

42. Carlson D. F Production of hornless dairy cattle from genome-edited cell lines / D. F. Carlson, C. A. Lancto, B. Zang et.al. // Nature Biotechnology. - 2016. - V.34. P. - 479-481. DOI: 10.1038/nbt.3560

43. Flisikowska T. Genetically modified pigs to model human diseases / T. Flisikowska, A. Kind, A. Schnieke // A Journal of Applied Genetics. - 2014. - № 55. - P. 53-64. DOI: 10.1007/s13353-013-0182-9

44. Bruce A. Genome edited animals: Learning from GM crops? / A. Bruce Transgenic Res. // 2017 V. 26. P. 385-398. DOI: 10.1007/s11248-017-0017-2

45. Rongxue Peng. Potential pitfalls of CRISPR / Cas9-mediated genome editing / Peng Rongxue, Lin Guigao, Li Jinming // FEBS J. - 2016. - V. 283. - P. 1218-1231 DOI:10.1111/febs.13586

46. Xu H. Sequence determinants of improved CRISPR sgRNA design / H. Xu, T. Xiao, C. H. Chen et al. // Genome Res. - 2015. - V. 25. - P.1147-1157. DOI: 10.1101/gr.191452.115

47. Moreno-Mateos M. A. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo / M. A. Moreno-Mateos, C. E. Vejnar, J. D. Beaudoin et al. Nat. Methods. - 2015. - V. 12. - P. 982-988. DOI: 10.1038/nmeth.3543

48. Wang T. Genetic screens in human cells using the CRISPR-Cas9 system. / T. Wang, J. J. Wei, D. M. Sabatini et al. // Science. - 2014. - V.343. - P.80-84. DOI: 10.1126/science.1246981

49. Pattanayak V. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity / V. Pattanayak, S. Lin, J. P. Guilinger et al. // Nat. Biotechnol. - 2013. - V. 31. - P. 839-843

50. Raschmanová H. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects / H. Raschmanová, A. Weninger, A Glieder et al. // Biotechnology Advances. - 2018 https://doi.org/10.1016/j.biotechadv.2018.01.006

51. Daetwyler H. D. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle / Daetwyler H. D., Capitan A., Pausch H. et al. // Nat. Genet. - 2014. - V.46. - P.858-865. doi: 10.1038/ng.3034

52. Kleinstiver B. P. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells / B. P. Kleinstiver, S. Q. Tsai, M. S. Prew et al. // Nature Biotechnology. - 2016. - V.34. - P. 869-874. DOI: 10.1038/nbt.3620

53. Zetsche B. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system / B. Zetsche, J. S. Gootenberg, O. O. Abudayyeh et al. // Cell. - 2015. - V.163. - P. 759-771. DOI: 10.1016/j.cell.2015.09.038


Для цитирования:


Яковлев А.Ф. Редактирование генома сельскохозяйственных животных. Генетика и разведение животных. 2018;(2):4-12.

For citation:


Yakovlev A... The genome editing of agricultural animals. Genetics and breeding of animals. 2018;(2):4-12. (In Russ.)

Просмотров: 72


ISSN 2410-2733 (Print)