Preview

Genetics and breeding of animals

Advanced search

Genome-wide association studies of economically important features of rainbow trout (Oncorhynchus mykiss)

https://doi.org/10.31043/2410-2733-2024-3-35-46

Abstract

Purpose: to summarize the results of scientific publications on the use of genome-wide associative studies of economically important traits in rainbow trout (Oncorhynchus mykiss).
Materials and methods. PubMed Scientometric Database (https://pubmed.ncbi.nlm.nih.gov /), Science Direct (https://www.sciencedirect.com /), scientific electronic library eLibrary (https://elibrary.ru /).
Results. An important step in improving breeding programs for rainbow trout (Oncorhynchus mykiss) is the use of knowledge about the genetic architecture underlying the variability of economically useful traits. In 2014, the first version of the reference genome assembly was published, which served as the basis for the identification of single-nucleotide polymorphisms and the development of a medium-density DNA chip, which, in turn, made it possible to conduct genome-wide association studies (GWAS). GWAS makes it possible to identify SNPs with great effect responsible for phenotypic variants that can be given priority in genomic selection, which will make it possible to carry out further intra-family selection based on the most economically important characteristics. Many scientific papers have been devoted to the use of genome-wide associative research in trout farming. The review shows the relevance and prospects of using the GWAS method in aquaculture breeding of rainbow trout as a tool for identifying candidate genes that affect growth, meat quality and disease resistance. Having analyzed the foreign experience of using GWAS, I would like to note its relevance and prospects, because most of the economically useful features are polygenic in nature.

About the Author

N. Pysarenko
L. K. Ernst Federal Research Center for Animal Husbandry
Russian Federation

PhD (Agr. Sci)

142132, Moscow region, Podolsk city district, Dubrovitsy settlement 60



References

1. Blay C. Genetic Parameters and Genome-Wide Association Studies of Quality Traits Characterised Using Imaging Technologies in Rainbow Trout, Oncorhynchus mykiss / C. Blay, P. Haffray et al. // Front. Genet. – 2021. – Vol. 12. – 639223.

2. Haldar C. Single nucleotide polymorphism marker and its application in aquaculture: New opportunities and challenges / C. Haldar, R. Ram // International Journal of Fauna and Biological Studies. – 2018. – Vol. 5. – № 4. — Р. 83–86.

3. Liu S. Identification of single nucleotide polymorphism markers associated with bacterial cold water disease resistance and spleen size in rainbow trout / S. Liu, R. L. Vallejo et al. // Front. Genet. – 2015. – Vol. 6. – Art. 298.

4. Yanez J. M. Genome-wide association and genomic selection in aquaculture / J. M. Yanez, A. Barría et al. // Reviews in Aquaculture. 2023. – Vol. 15. – P. 645–675.

5. Hou Z. S. Transcriptional Profiles of Genes Related to Stress and Immune Response in Rainbow Trout (Oncorhynchus mykiss) symptomatically or asymptomatically infected with vibrio anguillarum / Z. S. Hou, Y.-R. Xin et al. // Frontiers in Immunology. – 2021. – Vol. 12. – Р. 1–19.

6. Berthelot C. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates / C. Berthelot, F. Brunet et al. // Nat. Commun. — 2014. – Vol. 5. – № 1. – P. 3657.

7. Salem M. RNA-Seq identifies SNP markers for growth traits in rainbow trout / M. Salem, R. L. Vallejo, T. D. Leeds, Y. Palti, S. Liu, A. Sabbagh // PLoS ONE. – 2012. – Vol. 7. – № 5. – e36264.

8. Al-Tobasei R. Identification of SNPs associated with muscle yield and quality traits using allelicimbalance analyses of pooled RNA-Seq samples in rainbow trout / R. Al-Tobasei, A. Ali et al. // BMC Genomics. – 2017. – Vol. 18. – № 1. – P. 582.

9. Palti Y. A resource of single-nucleotide polymorphisms for rainbow trout generated by restriction-site associated DNA sequencing of doubled haploids / Y. Palti, G. Gao et al. // Molecular Ecology Resources. – 2014. – Vol. 14. – № 3. – P. 588–596.

10. Salem M. Genome-wide association analysis with a 50K transcribed gene SNPChip identifies QTL affecting muscle yield in rainbow trout / M. Salem, R. Al-Tobasei et al. // Front Genet. – 2018. – Vol. 9. – № 387.

11. Palti Y. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout / Y. Palti, G. Gao et al. // Mol. Ecol. Resour. – 2015a. – Vol. 15. – № 3. – P. 662–672.

12. Larson W. A. Rapid Discovery of SNPs that Differentiate Hatchery Steelhead Trout from ESAListed Natural-Origin Steelhead Trout Using a 57K SNP Array / W. A. Larson, Y. Palti, G. Gao, K. I. Warheit, J. E. Seeb // Can. J. Fish. Aquat. Sci. – 2018. – V. 75. – P. 1160–1168.

13. D’Ambrosio J. Genome-wide estimates of genetic diversity, inbreeding and effective size of experimental and commercial rainbow trout lines undergoing selective breeding / J. D’Ambrosio, F. Phoca et al. // Genetics Selection Evolution. – 2019. – Vol. 51. – № 1. – P. 26.

14. Cadiz M.I. Detection of selection signatures in the genome of a farmed population of anadromous rainbow trout (Oncorhynchus mykiss) / M. I. Cadiz, M. E. López et al. // Genomics. – 2021. – Vol. 113. – Р. 3395–404.

15. Bernard М. Development of a high-density 665 K SNP array for rainbow trout genome-wide genotyping / М. Bernard, A. Dehaullon et al. // Front. Genet. – 2022. – Vol. 13. – Art. 941340.

16. Paul K. Genome-wide detection of positive and balancing signatures of selection shared by four domesticated rainbow trout populations (Oncorhynchus mykiss) / K. Paul, G. Restoux, F. Phocas // Genetics Selection Evolution. – 2024. – Vol. 56. – № 13.

17. Georges M. Harnessing genomic information for livestock improvement / M. Georges, C. Charlier, B. Hayes // Nat Rev Genet. – 2019. – Vol. 20. – № 3. – Р. 135–156.

18. Misztal I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information / I. Misztal, A. Legarra, I. Aguilar // J. Dairy Sci. – 2009. – Vol. 92. – P. 4648–4655.

19. Christensen O.F. Genomic prediction when some animals are not genotyped / O. F. Christensen, M. S. Lund // Genet. Sel. Evol. – 2010. – Vol. 42. – № 2. – P. 1–8.

20. Meuwissen T. H. E. Prediction of total genetic value using genome-wide dense marker maps / T. H. E. Meuwissen, B. J. Hayes, M. E. Goddard // Genetics. – 2001. – Vol. 157. – № 2. – P. 1819–1829.

21. Vallejo R. L. Similar genetic architecture with shared and unique quantitative trait loci for bacterial cold water disease resistance in two rainbow trout breeding populations / R. L. Vallejo, S. Liu et al. // Front Genet. – 2017б. – Vol. – 8. – P. 1–15.

22. Wang H. Genome-wide association mapping including phenotypes from relatives without genotypes / H. Wang, I. Misztal et al. // Genet. Res. (Camb). – 2012. – Vol. 94. – P. 73–83.

23. Sermyagin A. A. Evaluation of genomic variability of productive traits in Holsteinized Black-and-White animals based on GWAS analysis and ROH patterns / A. A. Sermyagin, O. A. Bykova et al. // Agricultural biology. — 2020. — Vol. 55. — № 2. — P. 257—274.

24. Belous A. A. Genetic architecture of reproductive traits in Russian Landrace pigs / A. A. Belous, V. V. Volkova et al. // Agrarian science. — 2023. — №7. — P. 31—39.

25. Vetokh A.N. Genome-wide association studies of meat quality based on breast color indicators in chickens (Gallus gallus L.) / A. N. Vetokh, A. Yu. Dzhagaev, A. A. Belous, N. A. Volkova, N. A. Zinovieva // Agricultural biology. — 2023. — Vol. 58. — № 6. — P. 1068–1078.

26. Liu H. QTL fne mapping and identifcation of candidate genes for growth-related traits in bighead carp (Hypophthalmichehys nobilis) / H. Liu, B. Fu et al. // Aquaculture. – 2016. – Vol. 465. – P. 134–143.

27. Mackay T. F. C. The genetic architecture of quantitative traits / T. F. C. Mackay // Annu. Rev. Genet. – 2001. – Vol. 35. – P.303–339.

28. Rasmussen R. S. Growth, feed utilisation, carcass composition and sensory characteristics of rainbow trout treated with recombinant bovine placental lactogen and growth hormone / R. S. Rasmussen, B. Ronsholdt et al. // Aquaculture. – 2001. – Vol. 195. – P. 367–384.

29. Yanez J. M. Genomics in aquaculture to better understand species biology and accelerate genetic progress / J. M. Yanez, S. Newman, R. D. Houston // Frontiers in Genetics. – 2015. – Vol. 6. – P. 1–3.

30. Ali A. Genome-wide identification of loci associated with growth in rainbow trout / A. Ali, R. Al-Tobasei, D. Lourenco, T. Leeds, B. Kenney, M. Salem // BMC Genomics. – 2020 – Vol. 21. – Р. 209.

31. Salem M. Genome-wide association analysis with a 50K transcribed gene SNP- chip identifies QTL affecting muscle yield in rainbow trout / M. Salem, R. Al-Tobasei et al. // Front. Genet. – 2018. – Vol. 9. – № 387.

32. Reis Neto R.V. Genome-wide association analysis for body weight identifies candidate genes related to development and metabolism in rainbow trout (Oncorhynchus mykiss) / R. V. Reis Neto, G. M. Yoshida, J. P. Lhorente, J. M. Yanez // Mol Genet Genomics. – 2019. – Vol. 294. – № 3. – P. 563–571.

33. Gonzalez-Pena D. Genome-wide association study for identifying loci that affect fillet yield, carcass, and body weight traits in rainbow trout (Oncorhynchus mykiss) / D. Gonzalez-Pena, G. Gao et al. // Front Genet. – 2016. – Vol. 7. – P. 1–14.

34. Yoshida G.M. Increased accuracy of genomic predictions for growth under chronic thermal stress in rainbow trout by prioritizing variants from GWAS using imputed sequence data / G. M. Yoshida, J.M. Yanez // Evolutionary Applications. – 2021. – Vol. 15. – № 4. – P. 537–552.

35. Ahmed R.O. Weighted Single-Step GWAS Identifies Genes Influencing Fillet Color in Rainbow Trout / R.O. Ahmed, A. Ali et al. // Genes. – 2022. – Vol. 13. – P. 1331.

36. Ali A. Genome-Wide Association Study Identifies Genomic Loci Affecting Filet Firmness and Protein Content in Rainbow Trout / A. Ali, R. Al-Tobasei et al. // Front. Genet. – 2019. – V. 10. – P. 386.

37. Ali A. Genome-wide scan for common variants associated with intramuscular fat and moisture content in rainbow trout / A. Ali, R. Al-Tobasei et al. // BMC Genomics. – 2020. – Vol. 21. – Р. 529.

38. Blay C. Genetic architecture and genomic selection of fatty acid composition predicted by Raman spectroscopy in rainbow trout / C. Blay, P. Haffray et al. // BMC Genomics. – 2021. – Vol. 22. – Article 788.

39. Lei C. Molecular cloning, expression pattern of beta-carotene 15,15-dioxygenase gene and association analysis with total carotenoid content in pearl oyster Pinctada fucata martensii / C. Lei, J. Li, Z. Zheng et al. // Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology. – 2019. – Vol. 229. – P. 34–41.

40. Yan W. Cloning and characterization of a human, β-carotene-15, 150-dioxygenase that is highly expressed in the retinal pigment epithelium / W. Yan, G.-F. Jang et al. / / Genomics. – 2001. – Vol. 72. – P. 193–202.

41. Matthews S.J. Astaxanthin binding protein in Atlantic salmon / S. J. Matthews, N. W. Ross, S. P. Lall, T. A. Gill // Comp. Biochem. Physiol. B Biochem. Mol. Biol. – 2006. – Vol. 144. – № 2. – P. 206–214.

42. Bonneau M. Production systems and influence on eating quality of pork / M. Bonneau, B. Lebret // Meat Sci. – 2010. – Vol. 84. – P. 293–300.

43. Bishop S. C. Genomics and disease resistance studies in livestock / S. C. Bishop, J. A. Woolliams // Livest. Sci. – 2014. – Vol. 166. – P. 190–198.

44. Odegard J. Methodology for genetic evaluation of disease resistance in aquaculture species: Challenges and future prospects / J. Odegard, M. Baranski et al. // Aquacult. Res. – 2011. – Vol. 42. – P. 103–114.

45. Yanez J. M. Genetics and genomics of disease resistance in salmonid species / J. M. Yanez, R. D. Houston, S. Newman // Front. Genet. – 2014. – Vol. 5. – 415.

46. Flores-Mara R. Resistance against infectious pancreatic necrosis exhibits significant genetic variation and is not genetically correlated with harvest weight in rainbow trout (Oncorhynchus mykiss) / R. Flores-Mara, F. H. Rodriguez et al. // Aquaculture. – 2017. – Vol. 479. – Р. 155–160.

47. Barria A. Single-Step Genome-Wide Association Study for Resistance to Piscirickettsia salmonis in Rainbow Trout (Oncorhynchus mykiss) / A. Barria, R. Marin-Nahuelpi et al. // G3 (Bethesda). – 2019. – Vol. 9. – №11. – P. 3833–3841.

48. Palti Y. Detection and validation of QTL affecting bacterial cold water disease resistance in rainbow trout using restriction-site associated DNA sequencing / Y. Palti, R. L. Vallejo et al. // PLoS One. – 2015. – Vol. 10. – № 9.

49. Palti Y. Genome-wide association analysis of the resistance to infectious hematopoietic necrosis virus in two rainbow trout aquaculture lines confirms oligogenic architecture with several moderate effect quantitative trait loci / Palti Y., Vallejo R. L. et al. // Front. Genet. – 2024. Vol. 15. – 394656.

50. Rodriguez F. H. Genome-Wide Association Analysis for Resistance to Infectious Pancreatic Necrosis Virus Identifies Candidate Genes Involved in Viral Replication and Immune Response in Rainbow Trout (Oncorhynchus mykiss) / F. H. Rodriguez, R. Flores-Mara et al. // G3 (Bethesda). – 2019. – Vol. 9. – № 9. – Р. 2897–2904.

51. Vallejo R. L. Genome-wide association analysis and accuracy of genome-enabled breeding value predictions for resistance to infectious hematopoietic necrosis virus in a commercial rainbow trout breeding population / R. L. Vallejo, H. Cheng et al. // Genetics Selection Evolution. – 2019. – Vol. 51. – № 1.

52. Silva R. M. O. Whole-genome mapping of quantitative trait loci and accuracy of genomic predictions for resistance to columnaris disease in two rainbow trout breeding populations / R. M. O. Silva, J. P. Evenhuis et al. // Genet. Sel. Evol. – 2019. – Vol. – 51. – № 42.

53. Vallejo R. L. Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture / R. L. Vallejo, T. D. Leeds et al. // Genet Sel Evol. – 2017. – Vol. 49. – № 17.

54. Vallejo R. L. Accurate genomic predictions for BCWD resistance in rainbow trout are achieved using low-density SNP panels: Evidence that long-range LD is a major contributing factor / R. L. Vallejo, R. M. O. Silva et al. // Journal of Animal Breeding and Genetics. – 2018. – Vol. 135. – № 4. – P. 263–274.


Review

For citations:


Pysarenko N. Genome-wide association studies of economically important features of rainbow trout (Oncorhynchus mykiss). Genetics and breeding of animals. 2024;(3):35-46. (In Russ.) https://doi.org/10.31043/2410-2733-2024-3-35-46

Views: 123


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2733 (Print)