Preview

Genetics and breeding of animals

Advanced search

Correlation analysis of anthropometric parameters and macromorphology of intestinal lymphoid tissue in female lynx (Lynx lynx) juveniles

https://doi.org/10.31043/2410-2733-2025-2-77-85

Abstract

Purpose: to study the relationship between morphometric parameters of intestinal lymphoid tissue and anthropometric indicators (weight, body length) in young female Eurasian lynx (Lynx lynx).

Materials and Methods. The analysis included data from 12 individuals harvested during legal hunting and scientific shooting in 2023–2024 in the Kirov Region and adjacent regions. To study the intestinal morphometry of lymphoid tissue, small and large intestinal samples were used, in which the number, size, and spatial distribution of lymphoid nodules and plaques were measured. Anthropometric parameters (body weight accurate to the nearest 5 g, body length) were recorded before butchering.

The study results revealed a number of significant patterns. First, a general biological relationship between body weight and body length was confirmed (ρ=0,800, p=0,002). Secondly, a strong correlation was found between the duodenum area and body weight (ρ=1.000, p<0.01). However, negative correlations were also revealed: body weight was associated with a decrease in the number of lymphoid nodules in the duodenum (ρ=-0,800, p=0,002), while body length was associated with a decrease in the area of ​​the ileum (ρ=-0,800, p=0,002). Age-related dynamics of lymphoid structures in lynxes is manifested in a decrease in the number of nodules (ρ=-0,800) and plaques (ρ=-0,775) in the duodenum against the background of an increase in the distance between them (ρ=0,800). The species-specific characteristics of the lynx are reflected in the spatial distribution of lymphoid structures: in the jejunum, a positive correlation was found between the area of ​​nodules (ρ=0,800) and the number of plaques (ρ=0,632) and metabolic activity, which is characteristic of adaptation to an antigen load in the wild. Morphometric analysis revealed a structural reorganization of the lymphoid tissue: a decrease in the distance between nodules (ρ=-0.600) with a simultaneous increase in their number (ρ=0,600), indicating compaction and optimization of the spatial arrangement of immune structures. The predominance of lymphoid plaques in the duodenum (ρ=0,949, p<0,001) is similar to data for canids, in which they constitute up to 70 % of the lymphoid mass of the proximal sections.

About the Authors

V. Stepanov
Prof. B. M. Zhitkov Russian Research Institute of Game Management and Fur Farming
Russian Federation

Stepanov Valery Vyacheslavovich – Junior Researcher, Department of Game Resource Studies and Animal Ecology

610000, Kirov (reg.), st. Preobrazhenskaya, 79



Yu. Berezinza
Prof. B. M. Zhitkov Russian Research Institute of Game Management and Fur Farming
Russian Federation

Berezina Yulia Anatolyevna – PhD (Vet. Sci.), Senior Researcher, Veterinary Laboratory

610000, Kirov (reg.), st. Preobrazhenskaya, 79



O. Bespyatykh
Prof. B. M. Zhitkov Russian Research Institute of Game Management and Fur Farming; Vyatka State University
Russian Federation

Bespyatykh Oleg Yuryevich – Dr Habil. (Biol. Sci.), Associate Professor, Department of Medical and Biological Disciplines

610000, Kirov (reg.), st. Preobrazhenskaya, 79

610002, Kirov, st. Orlovskaya, 12



A. Syutkina
Prof. B. M. Zhitkov Russian Research Institute of Game Management and Fur Farming
Russian Federation

Syutkina Anna Sergeevna – PhD (Vet. Sci.), senior researcher at the veterinary laboratory

610000, Kirov (reg.), st. Preobrazhenskaya, 79



M. Kibardin
Prof. B. M. Zhitkov Russian Research Institute of Game Management and Fur Farming
Russian Federation

Kibardin Mikhail Sergeevich - junior researcher at the veterinary laboratory

610000, Kirov (reg.), st. Preobrazhenskaya, 79



I. Domskiy
Prof. B. M. Zhitkov Russian Research Institute of Game Management and Fur Farming
Russian Federation

Domsky Igor Aleksandrovich – Dr Habil. (Vet. Sci.),Professor, Director of the Institute

610000, Kirov (reg.), st. Preobrazhenskaya, 79



References

1. Solovey I. Spatial structure and population density of the lynx Lynx lynx in Belarus according to the 2022 questionnaire survey / I. Solovey et al. // Bulletin of Zoology. – 2023. – P. 150–154.

2. Palmero S. Demography of a Eurasian lynx (Lynx lynx) population within a strictly protected area in Central Europe / S. Palmero, L. Bufka et al. // Scientific Reports. – 2021. – V. 11. – № 1. – P. 1–11.

3. Kubala J. Monitoring of Eurasian Lynx (Lynx lynx) in the Vepor Mountains and its importance for the national and European management and species conservation / J. Kubala, N. Guimarães, J. Brndiar et al. – 2019. – P. 1–21.

4. Najera F. Disease Surveillance during the Reintroduction of the Iberian Lynx (Lynx pardinus) in Southwestern Spain / F. Najera, R. Grande-Gómez, J. Peña et al. // Animals. – 2021. – V. 11. – № 2. – P. 547.

5. Filip-Hutsch K. Endoparasites of Eurasian lynx (Lynx lynx) (Linnaeus, 1758) from an enclosure of Western Pomeranian Nature Society in Jablonowo / K. Filip-Hutsch, A. Demiaszkiewicz // Annals of Parasitology. – 2017. – V. 63. – № 1. – P. 33–36.

6. Valdmann H. Lynx (Lynx lynx) and wolf (Canis lupus) in the Baltic region: diets, helminth parasites and genetic variation / H. Valdmann // Tartu: Tartu University Press, 2007.

7. Stenseth N. C. Common dynamic structure of Canada lynx populations within three climatic regions / N. C. Stenseth, K. S. Chan, H. Tong et al // Science. – 1999. – V. 285. – № 5430. – P. 1071–1073.

8. Karbasnikov A. A. Dynamics of the lynx and hare population in the Verkhovazhsky district of the Vologda region / A. A. Karbasnikov, E. B. Karbasnikova, E. S. Baidakov // New impulses for development: issues of scientific research. – 2021. – № 2. – P. 118–122.

9. Panfilov A. B. Topography of the lymphoid tissue of the small intestinal wall of cattle and elk / A. B. Panfilov // Ippology and Veterinary Science. – 2015. – № 1 (15). – P. 57–62.

10. Berezina Yu. A. Growth intensity of red fox puppies of the Vyatka moth type / Yu. A. Berezina, M. A. Koshurnikova, O. Yu. Bespyatykh, et al. // Genetics and animal breeding. – 2023. – № 2. – P. 20–27.

11. Chikachev R. A. Morphometric parameters of the Eurasian lynx population in the Amur Region / R. A. Chikachev, I. E. Gusakova // Far Eastern Agrarian Bulletin. – 2021. – № 1 (57). – P. 61–69.

12. Romanov D. E. Genetic control of somatic growth regulation in mammals / D. E. Romanov // Advances in Modern Biology. – 2020. – Vol. 140. – № 6. – P. 565–573. doi: 10.31857/S004213242006006X.

13. Kalashnikov I. N. Phylogenesis of organ systems of chordate animals / I. N. Kalashnikov, T. G. Shcherbatyuk – 2017. – 130 p.

14. McDonald K. G. Aging impacts isolated lymphoid follicle development and function / K. G. McDonald, M. R. Leach, C. Huang et al. // Immun Ageing. – 2011. – V. 8(1):1. doi: 10.1186/1742-4933-8-1.

15. Bulekbaeva L. E. Microstructure of lymphoid nodules of the small intestine of mice after space flight and experiments / L. E. Bulekbaeva, E. A. Ilyin, G. A. Demchenko, et al. // International Journal of Experimental Education. – 2015. – № 11–1. – P. 102–103.

16. McGrosky A. Gross intestinal morphometry and allometry in Carnivora / A. McGrosky et al. // Eur J Wildl Res. – 2016. – V. 62. – P. 395–405.

17. Abdukarimov N. U. Morphometric characteristics of lymphoid nodules (Peyer's patches) of the small intestine in ontogenesis / N. U. Abdukarimov, Kh. A. Ganieva, G. M. Safarova, et al. // Universum: medicine and pharmacology: electronic. scientific journal. – 2020. – № 2–3 (66).

18. Khasanov B. B. Modern concepts of the structural and functional features of Peyer's patches / B. B. Khasanov // Achievements of science and education. – 2022. – № 5 (85). – P. 78–87.

19. Morbe U. M. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function / U. M. Morbe, P. B. Jorgensen, T. M. Fenton et. al // Mucosal Immunol. – 2021. – V. 14. – № 4. – P. 793–802. doi: 10.1038/s41385-021-00389-4.

20. Tikhonov E. A. Structural changes in Peyer's patches in male Wistar rats during postnatal ontogenesis / E. A. Tikhonov, E. A. Ponomarenko, V. A. Mkhitarov, et al. // Morphological statements. – 2014. – Vol. 22. – №1. – P. 85–94. doi: 10.20340/mv-mn.2014.0(1):85-94.

21. Zhdanova O. B. New methodological solutions in the pathomorphology of helminthiases / O. B. Zhdanova, S. P. Ashikhmin, E. S. Klyukina, et al. // Russian parasitological journal. – 2010. – № 4. – P. 74–82.

22. Duque-Correa M. J. Mammalian intestinal allometry, phylogeny, trophic level and climate / M. J. Duque-Correa, D. Codron, C. Meloro et al // Proc Biol Sci. – 2021. – V. 288 (1944). doi: 10.1098/rspb.2020.2888.

23. Lovegrove B. G. The allometry of rodent intestines / B. G. Lovegrove // J. Comp. Physiol. B. – 2010. – V. 180. – P. 741–755.

24. McGrosky A. Gross intestinal morphometry and allometry in primates / A. McGrosky, C. Meloro, A. Navarrete et.al // Am J Primatol. – 2019. – V. 81. – № 8. doi: 10.1002/ajp.23035.

25. Cain J. W. Mechanisms of thermoregulation and water balance in desert ungulates / J. W. Cain, P. R. Krausman et. al // Wildlife Society Bulletin. – 2006. – V. 34. – P. 570–581. doi: 10.2193/0091-7648(2006)34[570:MOTAWB]2.0.CO;2.


Review

For citations:


Stepanov V., Berezinza Yu., Bespyatykh O., Syutkina A., Kibardin M., Domskiy I. Correlation analysis of anthropometric parameters and macromorphology of intestinal lymphoid tissue in female lynx (Lynx lynx) juveniles. Genetics and breeding of animals. 2025;(2):77-85. (In Russ.) https://doi.org/10.31043/2410-2733-2025-2-77-85

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2733 (Print)