Preview

Genetics and breeding of animals

Advanced search

Analysis of TNS2 gene polymorphism and its association with productivity traits in Rainbow Trout Rofor

https://doi.org/10.31043/2410-2733-2025-3-64-73

Abstract

The objective of this study was to analyze the A/G polymorphism at position 17:453356000 in the TNS2 gene, its association with phenotypic traits in the Rofor rainbow trout individuals, and to investigate the structure of the size and weight characteristics within the examined sample.

Materials and Methods. The study involved two-year-old female rainbow trout Rofor breed (n=200), which morphometric data were collected, including body weight, total length to the end of the caudal fin, length to the end of the scaled body, head length, maximum body height, and body thickness. Genotyping was performed using a test system developed in our laboratory. Data analysis were provided in the R programming language utilizing the GGally package, as well as complementary analysis in Python using tools from the scikit-learn library.

Results. Two hundred female broodstock rainbow trout of the Rofor breed were successfully genotyped for the A/G single nucleotide polymorphism at position 17:453356000 in the TNS2 gene. The vast majority of individuals were heterozygous AG carriers (n=161). The study demonstrated a high interdependence among the morphometric traits of rainbow trout, with the GG genotype being associated with morphometric characteristics indicative of a larger body conformation. This research broadens current knowledge of rainbow trout genetics. Moreover, a genotyping test system for the A/G polymorphism in the exon region of the TNS2 gene was developed, offering a valuable tool for marker-assisted selection programs in rainbow trout breeding.

About the Authors

O. Nikolaeva
Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry
Russian Federation

Nikolaeva Olga Anatolyevna — Junior Researcher, Laboratory of Molecular Genetics

196625, St. Petersburg, Tyarlevo, Moskovskoe Shosse, 55a



Yu. Shcherbakov
Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry
Russian Federation

Shcherbakov Yuri Sergeevich — PhD (Biol. Sci.), Researcher; Laboratory of Molecular Genetics

196625, St. Petersburg, Tyarlevo, Moskovskoe Shosse, 55a



A. Azovtseva
Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry
Russian Federation

Azovtseva Anastasia Ivanovna — Junior Researcher, Laboratory of Molecular Genetics

196625, St. Petersburg, Tyarlevo, Moskovskoe Shosse, 55a



References

1. Ahmed N. The blue dimensions of aquaculture: A global synthesis / N. Ahmed, S. Thompson // Science of the Total Environment. – 2019. – № 652. – P. 851—861. doi: /10.1016/j.scitotenv.2018.10.163.

2. Sanchez-Matos J. Environmental performance of rainbow trout (Oncorhynchus mykiss) production in Galicia-Spain: A Life Cycle Assessment approach / J. Sanchez-Matos, L. Regueiro et al. // Science of the Total Environment. – 2023. – № 856. – ID 159049. doi: 10.1016/j.scitotenv.2022.159049.

3. Al-Tobasei R. Genomic predictions for fillet yield and firmness in rainbow trout using reduced-density SNP panels / R. Al-Tobasei, A. Ali et al. // BMC Genomics. – 2021. – Vol. 22. – № 1. – ID 92.

4. D'Ambrosio J. Genome-wide estimates of genetic diversity, inbreeding and effective size of experimental and commercial rainbow trout lines undergoing selective breeding / J. D'Ambrosio et al. // Genetics, Selection, Evolution. – 2019. – Vol. 51. – № 1. – ID 26. doi: 10.1186/s12711-019-0468-4.

5. Crichigno S. A. Rainbow trout (Oncorhynchus mykiss) adaptation to a warmer climate: the performance of an improved strain under farm conditions / S. A. Crichigno, V. E. Cussac // Aquaculture International. — 2019. — № 27(6). — P. 1869—1882. doi: 0.1007/s10499-019-00438-7

6. Nikolaeva O. Test system customization for genotyping the BMP-2 gene 4:28632407 A/G polymorphism in aquacultured rainbow trout / O. Nikolaeva, A. Azovtseva, A. Ryabova // Genetics and breeding of animals (In Russ.). – 2024. — № 4. – P. 57—63. EDN: FGIHNL. doi: 10.31043/2410-2733-2024-4-57-63.

7. Dysin A. P. Salmonidae genome: features, evolutionary and phylogenetic characteristics / A. P. Dysin, Y. S. Shcherbakov et al. // Genes. – 2022. – Vol. 13. – № 12. – P. 2221–2256. EDN: MXGBZQ. doi: 10.3390/genes13122221.

8. Palti Y. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout / Y. Palti, G. Gao et al. // Molecular Ecology Resources. – 2015. – Vol. 15. – № 3. – P. 662–672. doi: 10.1111/1755-0998.12337.

9. Ahmed R.O. Weighted Single-Step GWAS Identifies Genes Influencing Fillet Color in Rainbow Trout / R.O. Ahmed, A. Ali et al. // Genes (Basel). – 2022. – Vol. 13. – № 8. – ID 1331. doi: 10.3390/genes13081331.

10. Marana M.H. Whole-genome association study searching for QTL for Aeromonas salmonicida resistance in rainbow trout / M. H. Marana et al. // Scienfic Reports. – 2021. – Vol. 11. – № 1. – ID 17857. doi: 10.1038/s41598-021-97437-7.

11. Sánchez-Roncancio C. GWAS on Imputed Whole-Genome Sequence Variants Reveal Genes Associated with Resistance to Piscirickettsia salmonis in Rainbow Trout (Oncorhynchus mykiss) / C. Sánchez-Roncancio, B. García, J. Gallardo-Hidalgo, J. M. Yáñez // Genes (Basel). – 2022. – Vol. 14. – № 1. – ID 114. doi: 10.3390/genes14010114.

12. Karami A.M. Validation of a QTL associated with resistance to Vibrio anguillarum in rainbow trout (Oncorhynchus mykiss) / A. M. Karami, M. H. Marana et al. // Acta veterinaria Scandinavica. – 2023. – Vol. 65. – № 1. – ID 28.

13. Gallardo-Hidalgo J. Multi-trait GWAS for growth under contrasting thermal rearing conditions in rainbow trout (Oncorhynchus mykiss) / J. Gallardo-Hidalgo, D. A. Tapia et al. // Molecular Genetics and Genomics. – 2025. – Vol. 300. – № 1. – ID 75.

14. Gonzalez-Pena D. Genome-Wide Association Study for Identifying Loci that Affect Fillet Yield, Carcass, and Body Weight Traits in Rainbow Trout (Oncorhynchus mykiss) / D. Gonzalez-Pena, G. Gao et al. // Frontiers in Genetics. – 2016. – № 7. – ID 203. doi: 10.3389/fgene.2016.00203.

15. Tsai H. Y. Verification of SNPs Associated with Growth Traits in Two Populations of Farmed Atlantic Salmon / H. Y. Tsai, A. Hamilton et al. // International Journal of Molecular Sciences. – 2015. – Vol. 17. – № 1. – ID 5.

16. Salem M. Genome-Wide Association Analysis With a 50K Transcribed Gene SNP-Chip Identifies QTL Affecting Muscle Yield in Rainbow Trout / M. Salem. R. Al-Tobasei et al. // Frontiers in Genetics. – 2018. – № 9. – ID 387. doi: 10.3389/fgene.2018.00387.

17. Reis Neto R.V. Genome-wide association analysis for body weight identifies candidate genes related to development and metabolism in rainbow trout (Oncorhynchus mykiss) / R. V. Reis Neto, G. M. Yoshida, J. P. Lhorente, J. M. Yáñez // Molecular Genetics and Genomics. – 2019. – Vol. 294. – № 3. – P. 563—571. doi: 10.1007/s00438-018-1518-2.

18. Koh A. C1-Ten is a protein tyrosine phosphatase of insulin receptor substrate 1 (IRS-1), regulating IRS-1 stability and muscle atrophy / A. Koh, M. N. Lee et al. // Molecular and Cellular Biology. – 2013. – Vol. 33. – № 8. – P. 1608—1620. doi: 10.1128/MCB.01447-12

19. Hafizi S. C1-TEN is a negative regulator of the Akt/PKB signal transduction pathway and inhibits cell survival, proliferation, and migration / S. Hafizi, F. Ibraimi, B. Dahlbäck // FASEB Journal. – 2005. – Vol. 19. – № 8. – P. 971—973. doi: 10.1096/fj.04-2532fje.

20. Jung A. S. Tensin2 is a novel mediator in thrombopoietin (TPO)-induced cellular proliferation by promoting Akt signaling / A. S. Jung, A. Kaushansky, G. Macbeath, K. Kaushansky // Cell Cycle. – 2011. – Vol. 10. – № 11. – P. 1838—1844. doi: 10.4161/cc.10.11.15776.

21. Yu J. S. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination / J. S. Yu, W. Cui // Development. – 2016. – Vol. 143. – № 17. – P. 3050—3060. doi: 10.1242/dev.137075.

22. Hafizi S. Tensin2 reduces intracellular phosphatidylinositol 3,4,5-trisphosphate levels at the plasma membrane // S. Hafizi et al. // Biochemical and Biophysical Research Communications. – 2010. – Vol. 399. – № 3. – P. 396–401.

23. Uchio-Yamada K. Tensin2 is important for podocyte-glomerular basement membrane interaction and integrity of the glomerular filtration barrier / K. Uchio-Yamada, K. Yasuda et al. // American Journal of Physiology. Renal Physiology. – 2020. – Vol. 318. – № 6. – P. 1520-1520.

24. Cho A. R. Deficiency of the tensin2 gene in the ICGN mouse: an animal model for congenital nephrotic syndrome / A. R. Cho, K. Uchio-Yamada et al. // Mammalian genome: official journal of the International Mammalian Genome Society. – 2006. – Vol. 17. — № 5. – P. 407—416.

25. Golod V. M. Selection and breeding work with rainbow trout: (Methodological manual) / V. M. Golod, V. Ya. Nikandrov, E. G. Terentyeva, N. I. Shindavina. – St. Petersburg, 1995. — 27 p.


Review

For citations:


Nikolaeva O., Shcherbakov Yu., Azovtseva A. Analysis of TNS2 gene polymorphism and its association with productivity traits in Rainbow Trout Rofor. Genetics and breeding of animals. 2025;(3):64-73. (In Russ.) https://doi.org/10.31043/2410-2733-2025-3-64-73

Views: 10


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2733 (Print)