Preview

Genetics and breeding of animals

Advanced search

The genome editing of agricultural animals

Abstract

Effective genome editing tools (ZFNs, Talens and (CRISPR / Cas)) have shown their ability to revolutionize molecular biological research with the hopes of applied results promotion. CRISPR / Cas as an evolutionarily acquired immune system of bacteria and archaea that prevents the invasion of viruses or plasmids has been successfully adapted for editing the genome of eukaryotes. CRISPR / Cas systems are currently divided into three main types: I, II and III, of which type II has relatively simple components and is most often used for editing the genome. This technology has been successfully applied to rabbits, pigs, goats, sheep and large cattle with the development of a variety of applications. In particular, editing the genome in farm animals can help improve productive genetic properties, improve various products of animal origin, ensure resistance to disease or minimize harmful effects on the environment. It is important that editing the genome in livestock can be used to increase the frequency of favorable alleles with QTN with great effect. Gene drives or repressions can be used to increase the rate at which the edited alleles spread among livestock populations. Successful promotion of useful alleles in animal breeding programs requires the discovery of loci of quantitative traits through a set of large data sets on the contribution of these loci to the formation of phenotypic traits.

About the Author

A. .. Yakovlev
Russian Research Institute of farm animal Genetics and breeding-branch of the L. K. ERNST Federal Science Center for animal husbandry
Russian Federation


References

1. Geurts A. M., Knockout rats via embryo microinjection of zinc-finger nucleases / A. M. Geurts, G. J. Cost, Y. Freyvert et al. // Science. - 2009. - V.325. - P. 433. DOI : 10.1126/science.1172447

2. Tesson L. Knockout rats generated by embryo microinjection of TALENs / L. Tesson, C. Usal, S. Menoret et al. // Nature Biotechnology. - 2011. - V. 29. - P. 695-696 DOI: 10.1038/nbt.1940

3. Petersen B. Basics of genome editing technology and its application in livestock species / B. Petersen // Reprod. Domest. Anim. - 2017. - V.52. - S. 3. - P. 4-13. DOI: 10.1111/rda.13012

4. Shen B. Generation of gene-modified mice via Cas9 / RNA-mediated gene targeting / B. Shen, J. Zhang, H. Wu // Cell Research. - 2013. - V. 23. - P. 720-723. DOI: 10.1038/cr.2013.46

5. Wang X. Disruption of FGF5 in cashmere goats using CRISPR / Cas9 results in more secondary hair follicles and longer fibers / X. Wang, B. Cai, J. Zhou et al. // PLoS One, 2016. October 18. https://doi.org/10.1371/journal.pone.0164640

6. Barrangou R. Crispr provides acquired resistance against viruses in prokaryotes. / R. Barrangou, C. Fremaux, H. Deveau et al. // Science. - 2007. - V.315. - P.1709-1712. DOI: 10.1126/science.1138140

7. Iliakis G. Mechanisms of DNA double strand break repair and chromosome aberration formation / G. Iliakis, H. Wang, A.R. Perrault et al. // Cytogenet. Genome Res. - 2004. - V.104. - P.14-20. DOI: 10.1159/000077461

8. Gu J. Mechanistic flexibility as a conserved theme across 3 billion years of nonhomologous DNA end-joining. Genes / J. Gu, M. R. Lieber // Dev. - 2008. - V. 22. - P.411-415. DOI: 10.1101/gad.1646608)

9. Yuduan Ding. Recent Advances in Genome Editing Using CRISPR / Cas9 / Yuduan Ding, Hong Li, Ling-Ling Chen // Front. Plant Sci. 24 May 2016. https://doi.org/10.3389/fpls.2016.00703

10. Moehle E. A. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases / E. A Moehle, J. M. Rock, Y. L. Lee, et al. // Proceedings of the National Academy of Sciences of the United States of America. - 2007. - V. 104. - P. 3055-3060. DOI: 10.1073/PNAS.0611478104

11. Jenko J. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs / J. Jenko, G. Gorjanc, M. A. Cleveland et al. // Genet. Sel. Evol. - 2015. - V.47. - P.47-55. doi:10.1186/s12711-015-0135-3

12. Soo-Young Yum. Development of genome engineering technologies in cattle: from random to specific / Soo-Young Yum, Ki-Young Youn,Woo-Jae Choi et al. // Anim. Sci. Biotechnol. - 2018. - V. 9. DOI: 10.1186 / s40104-018-0232-6

13. Lamas-Toranzo I. CRISPR is knocking on barn door Reprod. Domest. / I Lamas-Toranzo, J Guerrero-Sánchez, H Miralles-Bover // Animals. - 2017. - V.52. - Issue S4. - P. 39-47. DOI: 10.1111/rda.13047

14. Shao S. Enhancing CRISPR / Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae / S. Shao , C. Ren , Z. Liu et.al. // Int. J. Biochem. Cell Biol. - 2017. - V.18. - P. 43-52. DOI: 10.1016/j.biocel.2017.09.012.

15. Billon P. CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons / P. Billon , E. E. Bryant , S. A. Joseph et al. // Molecular cells. - 2017. - V. 67. - P.1068-1079. DOI: http://dx.doi.org/10.1016/j.molcel.2017.08.008

16. Li Guoling. Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells / Guoling Li, Xianwei Zhang, Cuili Zhong et al. // Sci. Rep. - 2017. - V.7. article number: 8943. DOI: 10.1038/s41598-017-09306-x

17. Singh P. A mouse geneticist's practical guide to CRISPR applications / P. Singh, J. C. Schimenti, E. Bolcun-Filas et al. // Genetics. - 2015. - V.199. - P. 1-15. DOI: 10.1534/genetics.114.169771

18. Song J. RS-1 enhances CRISPR / Cas9- and TALEN-mediated knock-in efficiency. / J. Song, D. Yang, J. Xu, et al. // Nature Communications. - 2016. - V. 7. - article number: 10548. DOI:10.1038/ncomms10548

19. Gonen Serap. Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs / Serap Gonen, Janez Jenko, Gregor Gorjanc et al. // Genetics Selection Evolution. - 2017. - V.49. doi: 10.1186/s12711-016-0280-3

20. Du S. J. Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth hormone gene construct. / S. J. Du, Z. Y. Gong, G. Fletcher et al. // Biotechnology. - 1992. - V.10. - P.176-181

21. Qian L. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs / L. Qian, M. Tang, J. Yang, et al. Scientific Reports. - 2015. - V. 5, article number: 14435. DOI:10.1038/srep14435

22. Proudfoot C. Genome edited sheep and cattle / C. Proudfoot, D. Carlson, R. Huddart. Transgenic Research. - 2015. - V. 24. - P.147-153. DOI: 10.1007/s11248-014-9832-x

23. Wang K. Efficient generation of myostatin mutations in pigs using the CRISPR / Cas9 system / K Wang, H. Ouyang, Z. Xie et al. // Scientific Reports. - 2015. - V. 5, article number:16623. DOI: 10.1038/srep16623

24. Wang K. CRISPR / Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs / K. Wang, Tang Xiaochun, Xie Zicong et al. // Transgenic Res. - 2017. - V. 9. - P.1-7. DOI: 10.1007/s11248-017-0044-z

25. Crispo M. Efficient generation of myostatin knock-out sheep using CRISPR / Cas9 technology and microinjection into zygotes / M. Crispo, A. P. Mulet L. Tesson et all. // PLoS One, 2015 V.10. DOI: 10.1371/journal.pone.0136690

26. Lv Q. Efficient generation of myostatin gene mutated rabbit by CRISPR / Cas9 / Q. Lv, L. Yuan, J. Deng // J. Scientific Reports. - 2016. - V. 6, article number: 25029. DOI: 10.1038/srep25029

27. Park K. E. Targeted gene knock-in by CRISPR / Cas ribonucleoproteins in porcine zygotes / K. Park, A. Powell, S. E. Sandmaier // Scientific Reports. - 2017. - V. 7. - article number:42458. DOI: 10.1038/srep42458

28. Zhang X. Disruption of the sheep BMPR-IB gene by CRISPR / Cas9 in in vitro-produced embryos / X. Zhang , W. Li , Y. Wu // Theriogenology. - 2017. - V. 91. - P. 163-172. DOI: 10.1016/j.theriogenology.2016.10.025

29. Bevacqua R. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR / Cas9 system / R. J. Bevacqua, R. Fernandez-Martin, V. Savy // Theriogenology. - 2016. - V. 86. - P. 1886-1896. DOI: 10.1016/j.theriogenology.2016.06.010

30. Chin-kai Chuang. Generation of GGTA1 mutant pigs by direct pronuclear microinjection of CRISPR/Cas9 plasmid vectors / Ching-Fu Tu, Chien-Hong Chen // Animal Biotechnology. - 2017. - V. 28. - P. 178-181. DOI: 10.21769/BioProtoc.2321

31. Xiaolong Wang. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR / Cas9 system / Xiaolong Wang, Honghao Yu, Yulin Chen // Scientific Reports. - 2015. - V. 5. - article number: 13878. DOI:10.1038/srep13878

32. Gao, Y. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects / Y. Gao, H. Wu, Y. Wang, et al. // Genome Biology. - 2017. - V.18. https://doi.org/10.1186/s13059-016-1144-4

33. Lillico S. Mammalian interspecies substitution of immune modulatory alleles by genome editing / S. Lillico, C. Proudfoot T. J. King // Scientific Reports. - 2016. - V. 6. article number: 21645. doi:10.1038/srep21645

34. Whitworth K. M. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. / K. M. Whitworth, R. Rowland R., S. Ewen et.al. // Nature Biotechnology. - 2016. - V. 34. P. 20-22. DOI: 10.1038/s41598-017-13794-2

35. Burkard C. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function / C. Burkard, S. Lillico G. E. Reid // PLoS Pathogens. - 2017. - V. 13. https://doi.org/10.1371/journal.ppat.1006206

36. Wells K. D. Genome-editing technologies to improve research, reproduction, and production in pigs / K. D. Wells, R. S. Prather // Molecular Reproduction and Development. - 2017. - V.84. - P. 1012-1017. DOI: https://doi.org/10.1002/mrd.22812

37. Jabed A. Targeted microRNA expression in dairy cattle directs production of beta-lactoglobulin-free, high-casein milk / A. Jabed, S. Wagner, J. McCracken et al. // Proc Natl. Acad. Sci. USA. - 2012. - V.109. - P.16811-16816. DOI: 10.1073/pnas.1210057109

38. Liu X. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows / X. Liu, Y. Wang, W. Guo et al. // Nat. Commun. - 2013. - V.4. DOI: 10.1038/ncomms3565

39. Song Y. Expression, purification and characterization of zinc-finger nuclease to knockout the goat beta-lactoglobulin gene / Y Song, C. Cui, H. Zhu et.al. // Protein Expression and Purification. - 2015. - V.112. - P.1-7. DOI: 10.1016/j.pep.2015.04.004

40. Oishi I. Targeted mutagenesis in chicken using CRISPR / Cas9 system / I. Oishi, I. K. Yoshii, D. Miyahara et al. // Scientific Reports. - 2016. - V.6. DOI: 10.1038/srep23980

41. Monzani P. S. Transgenic bovine as bioreactors: challenges and perspectives / P. S. Monzani, P. R. Adona, O. M. Ohashi et.al. // Bioengineered. - 2016. - V. 7. - P.123-131. DOI: 10.1080/21655979.2016.1171429

42. Carlson D. F Production of hornless dairy cattle from genome-edited cell lines / D. F. Carlson, C. A. Lancto, B. Zang et.al. // Nature Biotechnology. - 2016. - V.34. P. - 479-481. DOI: 10.1038/nbt.3560

43. Flisikowska T. Genetically modified pigs to model human diseases / T. Flisikowska, A. Kind, A. Schnieke // A Journal of Applied Genetics. - 2014. - № 55. - P. 53-64. DOI: 10.1007/s13353-013-0182-9

44. Bruce A. Genome edited animals: Learning from GM crops? / A. Bruce Transgenic Res. // 2017 V. 26. P. 385-398. DOI: 10.1007/s11248-017-0017-2

45. Rongxue Peng. Potential pitfalls of CRISPR / Cas9-mediated genome editing / Peng Rongxue, Lin Guigao, Li Jinming // FEBS J. - 2016. - V. 283. - P. 1218-1231 DOI:10.1111/febs.13586

46. Xu H. Sequence determinants of improved CRISPR sgRNA design / H. Xu, T. Xiao, C. H. Chen et al. // Genome Res. - 2015. - V. 25. - P.1147-1157. DOI: 10.1101/gr.191452.115

47. Moreno-Mateos M. A. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo / M. A. Moreno-Mateos, C. E. Vejnar, J. D. Beaudoin et al. Nat. Methods. - 2015. - V. 12. - P. 982-988. DOI: 10.1038/nmeth.3543

48. Wang T. Genetic screens in human cells using the CRISPR-Cas9 system. / T. Wang, J. J. Wei, D. M. Sabatini et al. // Science. - 2014. - V.343. - P.80-84. DOI: 10.1126/science.1246981

49. Pattanayak V. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity / V. Pattanayak, S. Lin, J. P. Guilinger et al. // Nat. Biotechnol. - 2013. - V. 31. - P. 839-843

50. Raschmanová H. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects / H. Raschmanová, A. Weninger, A Glieder et al. // Biotechnology Advances. - 2018 https://doi.org/10.1016/j.biotechadv.2018.01.006

51. Daetwyler H. D. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle / Daetwyler H. D., Capitan A., Pausch H. et al. // Nat. Genet. - 2014. - V.46. - P.858-865. doi: 10.1038/ng.3034

52. Kleinstiver B. P. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells / B. P. Kleinstiver, S. Q. Tsai, M. S. Prew et al. // Nature Biotechnology. - 2016. - V.34. - P. 869-874. DOI: 10.1038/nbt.3620

53. Zetsche B. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system / B. Zetsche, J. S. Gootenberg, O. O. Abudayyeh et al. // Cell. - 2015. - V.163. - P. 759-771. DOI: 10.1016/j.cell.2015.09.038


Review

For citations:


Yakovlev A... The genome editing of agricultural animals. Genetics and breeding of animals. 2018;(2):4-12. (In Russ.)

Views: 438


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2733 (Print)