Structure of the holstein dairy cattle subpopulation in Russia by locus CSN2 and CSN3
https://doi.org/10.31043/2410-2733-2021-4-5-10
Abstract
Purpose: to determine the potential of the Russian subpopulation of the Holstein breed in relation to selection by loci of beta-and kappa-casein.
Materials and methods. For loci CSN2 and CSN3, 1,539 Holstein cattle were genotyped, including 1,242 cows and heifers and 297 sires, and information on CSN2 and CSN3 genotypes of 297 US bulls was analyzed (World Wide Sires, Ltd).
Results. It has been established that in the last two years there has been an increase in the percentage of sires in WWS with CSN2 genotypes A2A2 and CSN3 genotypes BB. Thus, sires allele frequency in the 2019 catalog was 0.51 and 0.29, respectively; and in the 2021 catalog was 0.68 and 0.31, respectively.
Genotyped sires of domestic breeding organizations, which are mostly foreign origin, were characterized by predominance of the A2 allele CSN2; in this group the frequency of the allele was 0.63. However, the CSN3 B allele in the group of sires belonging to domestic organizations was found with a frequency of 0.34, which is 1.6 times lower than that of sires of American origin.
In the genotyped group of Holstein cows and heifers (n = 1242) belonging to 3 large farms in the Krasnodar Krai, the gene frequency CSN2 allele A2 was minimal (0.57), and the CSN3 allele B (0.40) was higher than the allele frequency in the sires group of domestic breeding enterprises.
Conclusion. At present, Russian breeding enterprises and farms are lagging behind in these indicators, however, by conducting targeted selection in accordance with the indicated trend, by selecting the appropriate breeding bulls, it is possible in the next generation to increase the proportion of animals carrying valuable genotypes.
About the Authors
N. KovalyukRussian Federation
Dr. Habil. (Biol. Sci.)
350055, Krasnodar city, Znamensky, Pervomayskaya Str., 4
127434, Moscow, Timiryazevskaya Str., 49
N. Altukhova
Russian Federation
PhD (Agr. Sci.)
350055, Krasnodar city, Znamensky, Pervomayskaya Str., 4
M. Glushchenko
Russian Federation
PhD (Agr. Sci.)
350055, Krasnodar city, Znamensky, Pervomayskaya Str., 4
A. Solovykh
Russian Federation
PhD (Agr. Sci.)
350055, Krasnodar city, Znamensky, Pervomayskaya Str., 4
References
1. Farrell H. M. Nomenclature of the proteins of cows’ milk—Sixth revision / H. M. Farrell, R. Jimenez-Flores, G. T. Bleck, E. M. Brown, J. E. Butler, L. K. Creamer, H. E. Swaisgood // J. Dairy Sci. – 2004. – № 87. – P. 1641-1674. https://doi.org/10.3168/jds.S0022-0302(04)73319-6
2. Kaminski S. Polymorphism of bovine -casein and its potential effect on human health / S. Kaminski, A. Cieslinska, E. Kostyra / J. Appl. Genet. – 2007. – № 48. – P. 189-198. https://doi.org/10.1007/bf03195213
3. Cieslinska A. Milk from cows of different ß -casein genotypes as a source of ß-casomorphin-7 / A. Cieslinska, E. Kostyra, H. Kostyra, K. Olenski, E. Fiedorowicz, S. Kaminski // Int. J. Food Sci. Nutr. – 2012. – № 63. – P. 426-430. https://doi.org/10.3109/09637486.2011.634785
4. Parashar A. A1 milk and its controversy-a review / A. Parashar, R. K. Saini // International Journal of Bioassays. – 2015. – № 4.12. – P. 4611-4619.
5. Cieslinska A. Influence of candidate polymorphisms on the dipeptidyl peptidase IV and opioid receptor genes expression in aspect of the ß -casomorphin-7 modulation functions in autism / A. Cieslinska, E. Sienkiewicz-Szłapka, J. Wasilewska, E. Fiedorowicz, B. Chwała, M. Moszynska-Dumara, E. Kostyra Peptides. – 2015. – №65. – 6-11. https://doi.org/10.1016/j.peptides.2014.11.012
6. Petrat-Melin B. In vitro digestion of purified ß -casein variants A(1), A(2), B, and I: Effects on antioxidant and angiotensin-converting enzyme inhibitory capacity / B. Petrat-Melin, P. Andersen, J. T. Rasmussen, N. A. Poulsen, L. B. Larsen, J. F. Young // J. Dairy Sci. – 2015. – №98. – P. 15-26. https://doi.org/10.3168/jds.2014-8330
7. Reichelt K. L. Peptides’ role in autism with emphasis on exorphins / K. L. Reichelt , D. Tveiten Bioengineer, A. M. Knivsberg, G. Brønstad // Microb. Ecol. Health D. – 2012. – №231. – 8958. https://doi.org/10.3402/mehd.v23i0.18958
8. Tepel A. Chemistry and Physics of Milk: trans. with him. ed. S.A. Filchakova. St. Petersburg: Profession, 2012. – 832 p.
9. Prinzenberg E. M. Genetic variation in kappa-casein gene (CSN3) of Chinese yak (Bos grunniens) and phylogenetic analysis of CSN3 seguences in the genus Bos / E. M. Prinzenberg, H. Jianlin, G. Erhardt // J. Dairy Sci. – 2008. – V. 91(3). – P. 1198-1203.
10. Heck J. M. Effects of milk protein variants on the protein composition of bovine milk / J. M. Heck, A. Schennink, H. J. Van Valenberg, H. Bovenhui, M. H. Visker, J. A. Van Arendonk, et al. // J. Dairy Sci. – 2009. – № 92. – Р. 1192-1202. doi: 10.3168/jds.2008-1208
11. Kovalyuk N. V. Breeding of cattle by the beta-casein gene in the Krasnodar Territory / N. V. Kovalyuk, V. F. Satsuk, M. A. Kovalyuk, E. V. Machulskaya // Genetics and animal breeding. – 2019. – № 1. – P. 22-27. doi: 10.31043/2410-2733-2019-1-22-26
12. Barroso A. Technical Note: Detection of Bovine Kappa-Casein Variants A, B, C, and E by Means of Polymerase Chain Reaction-Single Strand Conformation Polymorphism (PCR-SSCP) / A. Barroso, S. Dunner, J. Canon // J. Anim. Sci. – 1998. – № 76. – Р. 1535-1538.
Review
For citations:
Kovalyuk N., Altukhova N., Glushchenko M., Solovykh A. Structure of the holstein dairy cattle subpopulation in Russia by locus CSN2 and CSN3. Genetics and breeding of animals. 2021;(4):5-10. (In Russ.) https://doi.org/10.31043/2410-2733-2021-4-5-10