Search for associations of single-nucleotide substitutions of the GOS2 gene with signs of body weight and fat deposition in broilers
https://doi.org/10.31043/2410-2733-2024-1-31-38
Abstract
Purpose: Search for mononucleotide polymorphisms of the candidate gene G0S2 involved in lipid metabolism and study their relationship with abdominal fat content and body weight in broiler chickens.
Materials and methods. The experiments used 150 broilers of the Isa Hubbard F-15 cross at the age of 35 days from a private farm (2015). For sequencing, we used chickens of the Pushkin breed (23 individuals) aged 475 days, kept on the basis of the bioresource collection of the VNIIGRZh “Genetic collection of rare endangered breeds of chickens” (Pushkin, St. Petersburg). Identification of mononucleotide polymorphisms of the G0S2 gene was carried out by sequencing regions containing coding and regulatory sequences. Genotyping using the amplification method for testing test systems was carried out on a Thermal Cycler T100 device (Bio-Rad, USA).
Results. Using sequencing of the regulatory region of the G0S2 gene, two mononucleotide polymorphisms were identified: rs29005090 (A/G) and rs317858728 (A/G), as well as a significant influence of all three genotypes (AG, AA, GG) of the rs29005090 substitution on the studied traits. Mononucleotide substitution rs29005090 is classified as major, since the effect of allele substitution is more than 0.6–1.5 sigma. The GG genotype rs29005090 can be recommended for marker-assisted selection to increase poultry weight gain and reduce abdominal fat of chicken carcasses in meat poultry farming. When conducting an analysis of variance of data to calculate the effect of substitution of alleles of the mononucleotide substitution marker rs317858728 (A/G) with the traits bird weight and abdominal fat weight of broilers of the Isa Hubbard F-15 cross, a significant difference was revealed between genotypes AA-GG for the traits bird weight and for the sign abdominal fat mass. The highest indicators for body weight and abdominal fat mass were observed in chickens with the GG genotype. This mononucleotide substitution is considered major in relation to the trait “abdominal fat”, since the standard deviation is more than one sigmа.
Keywords
About the Authors
O. BarkovaRussian Federation
PhD (Biol. Sci)
196601, St. Petersburg, Pushkin, Moscow highway, 55a
A. Krutikova
Russian Federation
PhD (Biol. Sci)
196601, St. Petersburg, Pushkin, Moscow highway, 55a
T. Larkina
Russian Federation
PhD (Biol. Sci)
196601, St. Petersburg, Pushkin, Moscow highway, 55a
References
1. Zhang X. G0S2: a small giant controller of lipolysis and adipose-liver fatty acid flux / X. Zhang, B. L. Heckmann, L. E. Campbell and J. Liu /// Biochim. Biophys. Acta 1862 (10 Pt B). – 2017. – P. 1146–1154.
2. Park T. S. Disruption of G0/G1 switch gene 2 (G0S2) reduced abdominal fat deposition and altered fatty acid composition in chicken/ TS Park, J Park, JH Lee, JW Park, BC Park // FASEB J. – 2019. – V. 33 (1).– P. 1188-1198.
3. Siderovski D. P. A set of human putative lymphocyte G0/G1 switch genes includes genes homologous to rodent cytokine and zinc finger protein encoding genes/ D. P. Siderovski, S. Blum, R. E. Forsdyke, and D. R. Forsdyke // DNA Cell Biol. – 1990. – Vol. 9. – P. 579–587.
4. Haemmerle G. Defective Lipolysis and Altered Energy Metabolism in Mice Lacking Adipose Triglyceride Lipase / Haemmerle G., Lass A., Zimmermann R., Gorkiewicz G., Meyer C., Rozman J., Heldmaier G., Maier R., Theussl C., Eder S. // Science. – 2006. – V. 312. – P. 734–737.
5. Yang X. The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase/ X.Yang, X. Lu, M. Lombes, G. B. Rha, Y. I. Chi, T. M. Guerin, E. J. Smart, J. Liu./ Cell Metab. – 2010. – V. 11. – P. 194–205.
6. Russell L. A human putative lymphocyte G0/G1 switch gene containing a CpG-rich island encodes a small basic protein with the potential to be phosphorylated/ L. Russell, DR.Forsdyke // DNA Cell Biol. –1991. – V. 10. – P. 581–591.
7. Heckmann B. L. The G0/G1 switch gene 2 (G0S2): regulating metabolism and beyond/ B. L. Heckmann, X. Zhang, X. Xie, J. Liu // Biochim Biophys Acta. – 2013 – Vol. 1831 (2). – P. 276-281.
8. Teunissen B. E. Activation of PPARdelta inhibits cardiac fibroblast proliferation and the transdifferentiation into myofibroblasts/ B. E. Teunissen, P J. Smeets, P. H. Willemsen, L. J. De Windt, G. J. Van der Vusse, M. Van Bilsen // Cardiovasc Res. – 2007. – V. 75– P. 519–529.
9. Zandbergen F . The G0/G1 switch gene 2 is a novel PPAR target gene/ F. Zandbergen, S. Mandard, P. Escher, NS. Tan, D. Patsouris, T. Jatkoe, S. Rojas-Caro, S. Madore, W. Wahli, S .Tafuri, M. Muller, S. Kersten // Biochem J. – 2005. – Vol. 392. – P. 313–324.
10. Kitareewan S. G0S2 is an all-trans-retinoic acid target gene/ S. Kitareewan, S. Blumen, D. Sekula, R. P. Bissonnette, W. W. Lamph, Q. Cui, R. Gallagher, E. Dmitrovsky // Int J. Oncol. – 2008. – № 33. – P. 397–404.
11. Parikh H. TXNIP regulates peripheral glucose metabolism in humans/ H. Parikh, E . Carlsson, WA. Chutkow, LE. Johansson, H. Storgaard, P. Poulsen, R . Saxena, C. Ladd PC. Schulze, MJ . Mazzini, CB. Jensen, A. Krook, M. Bjornholm, H. Tornqvist, JR. Zierath, M. Ridderstrale, D. Altshuler, RT. Lee, A. Vaag, LC. Groop, VK. Mootha.// PLoS Med. – 2007. – 4. – P. e158.
12. Nielsen T. S. Fasting, but not exercise, increases adipose triglyceride lipase (ATGL) protein and reduces G(0)/G(1) switch gene 2 (G0S2) protein and mRNA content in human adipose tissue/ T. S. Nielsen, M. H. Vendelbo, N. Jessen, S. B. Pedersen, JO. Jorgensen, S . Lund, N . Moller// J Clin Endocrinol Metab. – 2011. – Vol. 96. – P. 1293–1297.
13. Yang X. The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase/ X. Yang, X. Lu, M. Lombes, G. B. Rha, Y. I. Chi, T. M. Guerin, E. J. Smart, J. Liu // Cell Metab. – 2010. – V. 11. – P. 194–205.
14. Ahn J. Differential expressions of G0/G1 switch gene 2 and comparative gene identification-58 are associated with fat content in bovine muscle/ J. Ahn, X. Li, Y.M. Choi, S. Shin, S. A. Oh, Y. Suh, T. H. Nguyen, M. Baik, S. Hwang, K. Lee // Lipids. – 2014. – Vol. 49. – P. 1–14.
15. Jiang Y. Tissue expression pattern and polymorphism of G0S2 gene in porcine/ Y. Jiang, W. Cen, S. Xing, J. Chen, H. Xu, A. Wen, L. Zhu, G. Tang, M. Li, A. Jiang // Gene. – 2014. – Vol. 539. – P. 173–179.
16. Yang X. G0S2 Gene Polymorphism and Its Relationship with Carcass Traits in Chicken / X. Yang, Y. Xian et al. // Animals. – 2022. – Vol.12 (7). – P. 916.
17. Oh S. A. Cloning of avian G(0)/G(1) switch gene 2 genes and developmental and nutritional regulation of G(0)/G(1) switch gene 2 in chicken adipose tissue/ S. A. Oh, Y. Suh, M. G. Pang, K. J. Lee.// Anim. Sci. – 2011. – Vol. 89. – P. 367–375.
18. Weller J. I. Quantitative trait loci analysis in animals, second edition / J. I Weller L.:CABI Publ. – 2012.
Review
For citations:
Barkova O., Krutikova A., Larkina T. Search for associations of single-nucleotide substitutions of the GOS2 gene with signs of body weight and fat deposition in broilers. Genetics and breeding of animals. 2024;(1):31-38. (In Russ.) https://doi.org/10.31043/2410-2733-2024-1-31-38