Preview

Genetics and breeding of animals

Advanced search

Test system customization for genotyping the BMP-2 gene 4:28632407 A/G polymorphism in aquacultured rainbow trout

https://doi.org/10.31043/2410-2733-2024-4-57-63

Abstract

The application of genomic selection in rainbow trout breeding is becoming more feasible with the advent of recent advances in molecular genetics. However, there are significant challenges in the field of aquaculture, as genomic and marker-assisted selection programmes for aquaculture are considerably behind those for terrestrial farm animals. Currently, there is an actual task to develop test systems for genotyping rainbow trout and for efficient enrichment of target populations with favourable polymorphisms. The objective of this study is to develop a test system based on the promising BMP-2 gene and to establish genomic associations between single nucleotide polymorphism (SNP) and the size-weight characteristics of fish.

Materials and methods. The material for the study was comprised of Rofor rainbow trout specimens (n=200), which were evaluated for the following size-weight parameters: fish weight, body length to the end of the caudal fin, length to the end of the scales, head length, height, and body thickness.

Results. The results of the study revealed that the overwhelming majority of fish (98 %) exhibited a heterozygous genotype (AG) while homozygous genotype AA was entirely absent from the sample. The analysis did not identify any notable correlations between size-weight parameters but a potential explanation for this could be the absence of the AA genotype within the population. Nevertheless, the test system was successfully developed and validated. The study of the influence of this polymorphism contributed to the knowledge of rainbow trout genetics. Further application of the developed test system in rainbow trout breeding programs is possible after conducting additional studies to identify economically useful genetic associations in larger samples of individuals.

About the Authors

O. Nikolaeva
Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry
Russian Federation

196625, St. Petersburg, Tyarlevo, Moskovskoe shosse, 55a



A. Azovtseva
Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry
Russian Federation

196625, St. Petersburg, Tyarlevo, Moskovskoe shosse, 55a



A. Ryabova
Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry
Russian Federation

196625, St. Petersburg, Tyarlevo, Moskovskoe shosse, 55a



References

1. Salem M. Genome-Wide Association Analysis With a 50K Transcribed Gene SNP-Chip Identifies QTL Affecting Muscle Yield in Rainbow Trout / M. Salem, R. Al-Tobasei, A. Ali, D. Lourenco, G. Gao, Y. Palti, B. Kenney, T. D. Leeds // Front Genet. – 2018. – Vol. 9: 387. DOI: 10.3389/fgene.2018.00387.

2. D'Ambrosio J. Genome-wide estimates of genetic diversity, inbreeding and effective size of experimental and commercial rainbow trout lines undergoing selective breeding / J. D'Ambrosio, F. Phocas, P. Haffray et al. // Genet Sel Evol. – 2019. – Vol.51. – №1: 26.

3. Al-Tobasei R. Genomic predictions for fillet yield and firmness in rainbow trout using reduced-density SNP panels / R. Al-Tobasei, A. Ali, A. L. S. Garcia, D. Lourenco, T. Leeds, M. Salem // BMC Genomics. – 2021. – Vol. 22. – № 1: 92.

4. Leeds T. D. Response to five generations of selection for growth performance traits in rainbow trout (Oncorhynchus mykiss) / T. D. Leeds, R. L. Vallejo, G. M. Weber, D. Gonzalez Pena, J. T. Silverstein // Aquaculture. – 2016. – Vol. 465. – №1. – P. 341–351.

5. Lefevre F. Selection for muscle fat content and triploidy affect flesh quality in pan-size rainbow trout, Oncorhynchus mykiss / F. Lefevre, M. Cardinal et al.// Aquaculture. – 2015. – Vol. 448. – P. 569–577.

6. Boudry P. Current status and potential of genomic selection to improve selective breeding in the main aquaculture species of International Council for the Exploration of the Sea (ICES) member countries / P. Boudry, F. Allal // Aquaculture Reports. – 2021. – Vol. 20: 100700 p.

7. Sae-Lim P. Defining desired genetic gains for rainbow trout breeding objective using analytic hierarchy process / P. Sae-Lim, H. Komen et al. // J Anim Sci. – 2012. – Vol. 90. – № 6. – P. 1766–1776.

8. Ali A. Genome-Wide Association Study Identifies Genomic Loci Affecting Filet Firmness and Protein Content in Rainbow Trout / A. Ali, R. Al-Tobasei et al. // Front. Genet. – 2019. – Vol. 10: P. 386.

9. Gonzalez-Pena D. Genome-Wide Association Study for Identifying Loci that Affect Fillet Yield, Carcass, and Body Weight Traits in Rainbow Trout (Oncorhynchus mykiss) / D. Gonzalez-Pena, G. Gao et al. // Front Genet. – 2016. – Vol. 7: P. 203.

10. Nikandrov V. Ya. Reproductive potential of rainbow trout Oncorhynchus mykiss and features of its manifestation / V. Ya. Nikandrov, N. I. Shindavina, A. A. Zinchenko, Yu. N. Lukina // Fishery Issues. –2024. – Vol. 25. – No. 2. – P. 105–110.

11. Bernard M. Development of a High-Density 665 K SNP Array for Rainbow Trout Genome-Wide Genotyping / M. Bernard, A. Dehaullon et al. // Front Genet. – 2022. – Vol. 13: 941340 p.

12. Yoshida G. M. Genome-Wide Association Study and Cost-Efficient Genomic Predictions for Growth and Fillet Yield in Nile Tilapia (Oreochromis niloticus) / G. M. Yoshida, J. P. Lhorente et al. // G3 (Bethesda). – 2019. – Vol. 9. – № 8. – P. 2597–2607.

13. Grafe I. TGF-β Family Signaling in Mesenchymal Differentiation / I. Grafe, S. Alexander // Cold Spring Harb Perspect Biol. – 2018. – Vol. 10. – №5: a022202.

14. Katagiri T. Bone Morphogenetic Proteins / T. Katagiri, T. Watabe // Cold Spring Harb Perspect Biol. – 2016. – Vol. 8. – №6: a021899.

15. Wu M. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease / M. Wu, G. Chen, Y. P. Li // Bone Res. – 2016. – Vol.4: 16009. 16. Zhang Y. Genome-wide identification and structural analysis of the BMP gene family in Triplophysa dalaica / Y. Zhang, J. Yu et al. // BMC Genomics. – 2024. – Vol. 25. – №1: 194.

16. Halloran D. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis / D. Halloran, H. W. Durbano, A. Nohe // J. Dev Biol. – 2020. – Vol. 8. – №3: 19.

17. Yang L. BMP2 increases hyperplasia and hypertrophy of bovine subcutaneous preadipocytes via BMP/SMAD signaling / L. Yang, W. Hao et al. // In Vitro Cell. Dev. Biol. - Animal. – 2022. – Vol. 58. – № 3. – P. 210–219.

18. Sivagurunathan U. Effects of dietary vitamin D3 levels on survival, mineralization, and skeletal development of gilthead seabream (Sparus aurata) larvae / U. Sivagurunathan, D. Dominguez et al. // Aquaculture. – 2022. – Vol. 560: 738505.

19. Song I. Effects of BMP-2 and vitamin D3 on the osteogenic differentiation of adipose stem cells / I. Song, B. S. Kim, C. S. Kim, Im G.I. // Biochem Biophys Res Commun. – 2011. – Vol. 408. – № 1. – P. 126–131.

20. Shahi M. Regulation of Bone Metabolism / M. Shahi, A. Peymani, M. Sahmani // Rep. Biochem. Mol. Biol. – 2017. – Vol. 5. – № 2. – P. 73–82.

21. Paxton H. Regional variation in the microhardness and mineralization of vertebrae from brown and rainbow trout / H. Paxton, R. H. C. Bonser, K. Winwood // Journal of Fish Biology. – 2006. – Vol. 68. – P. 481–487.

22. Salazar V. S. BMP signalling in skeletal development, disease and repair / V. S. Salazar, L.W. Gamer, V. Rosen // Nat Rev Endocrinol. – 2016. – Vol. 12. – №4. – P. 203–221.

23. Shcherbakov Yu. S. Occurrence of anomalies in the Ropsha golden trout / Yu. S. Shcherbakov, N. V. Dementyeva, V. P. Terletsky, V. I. Tyshchenko, V. M. Golod // Bulletin of KrasSAU. – 2020. – No. 11. – P. 145–151.

24. Berillis P. Factors that can lead to the development of skeletal deformities in fishes: A review / P. Berillis // J of Fisheries sciences. – 2015. – Vol. 9 – №3. – P. 17–23.

25. Reis Neto R.V. Genome-wide association analysis for body weight identifies candidate genes related to development and metabolism in rainbow trout (Oncorhynchus mykiss) / R. V. Reis Neto, G. M. Yoshida, J. P. Lhorente, J. M. Yanez // Mol Genet Genomics. – 2019. – Vol. 294. – №3. – P. 563–571.

26. Shcherbakov Yu. S. Analysis of the main components and comparative characteristics of female rainbow trout of three different breeds / Yu. S. Shcherbakov, V. I. Tyshchenko // Bulletin of KrasSAU. – 2021. – Vol. 8. – P. 113–118.

27. Terletskiy V. P. Selection of brood fish and accounting of height and weight parameters in rainbow trout of a new breeding form – Golden trout / V. P. Terletskiy, V. I. Tyshchenko, Y. S. Shcherbakov // Mezhdunarodny'j nauchno-issledovatel'skij zhurnal [International Research Journal]. – 2022. – № 8: P. 122.


Review

For citations:


Nikolaeva O., Azovtseva A., Ryabova A. Test system customization for genotyping the BMP-2 gene 4:28632407 A/G polymorphism in aquacultured rainbow trout. Genetics and breeding of animals. 2024;(4):57-63. (In Russ.) https://doi.org/10.31043/2410-2733-2024-4-57-63

Views: 218


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2733 (Print)