Competence to induced partenogenesis of Bos Taurus oocytes, depending on the gamete functional status and its origin (follicle diameter)
https://doi.org/10.31043/2410-2733-2020-1-15-21
Abstract
About the Authors
T. KuzminaRussian Federation
Dr. Habil. (Biol. Sci.)
St. Petersburg, Pushkin, Moskovskoe shosse, 55a, 196601
H. Alm
Germany
Alm Hanna — PhD (Biology)
Wilhelm-Stahl-Allee 2, 18196, Dummerstorf
References
1. Yum S. Development of genome engineering technologies in cattle: from random to specific/ S.-Y. Yum, K.-Y. Youn, W.-J. Choi, G. Jang // Journal of Animal Science and Biotechnology. — 2018. — V. 9(16). doi: 10.1186/s40104-018-0232-6.
2. Lagutina I. Developmental Potential of Bovine Androgenetic and Parthenogenetic Embryos: A Comparative Study / I. Lagutina, G. Lazzari, R. Duchi, C. Galli // Biology of reproduction. — 2004. — V. 70. — P. 400–405.
3. Bing Y. Parthenogenetic activation and subsequent development of porcine oocytes activated by a combined electric pulse and butyrolactone I treatment / Y. Bing, L. Che, Y. Hirao, N. Takenouchi, H. RodrÌguez-MartÌnez, T. Nagai// J Reprod Dev. — 2003. — V. 49 (2). — P. 159–166.
4. Camargo L. S. A. Contrasting effects of heat shock during in vitro maturation on development of in vitro-fertilized and parthenogenetic bovine embryos / L. S. A. Camargo, F. Q. Costa, M. Munk, S. WohlresViana, R. V. Serapi„o, B. C. Carvalho, P. H. Jr. Campos, A. C. Vieira, L. A. G. Nogueira, J. H. M. Viana // Reprod. Domest. Anim. — 2019. — V. 54(10). — P. 1357–1365. doi: 10.1111/rda.13544.
5. Chen Z. Birth of parthenote mice directly from parthenogenetic embryonic stem cells / Z. Chen, Z. Liu, J. Huang, T. Amano, C. Li, S. Cao, C. Wu, B. Liu, L. Zhou, M.G. Carter, D.L. Keefe, X. Yang, L. Liu // Stem Cells. — 2009. — V. 27(9). — P. 2136-2145.
6. Kono T. Genomic imprinting is a barrier to parthenogenesis in mammals. // Cytogenet Genome Res. — 2006. — V. 113(1–4). — P. 31–35.
7. Zhong C. Parthenogenetic haploid embryonic stem cells efficiently support mouse generation by oocyte injection / C. Zhong, Z. Xie, Q. Yin, R. Dong, S. Yang, Y. Wu, L. Yang, J. Li // Cell Research. — 2016. — V. 26. — P. 131–134. doi: 10.1038/cr.2015.132.
8. Milazzotto M. P. Effect of Chemical or Electrical Activation of Bovine Oocytes on Blastocyst Development and Quality / M. P. Milazzotto, W. B. Feitosa, A. R. S. Coutinho, M. D. Goissis, V. P. Oliveira, M. E. O. A. AssumpÁ„o, J. A. Visintin // Reprod. Dom. Anim. — 2008. — V. 43. — P. 319–322.
9. Carneiro G. Influence of Insulin-Like Growth Factor-I and Its Interaction with Gonadotropins, Estradiol, and Fetal Calf Serum on In Vitro Maturation and Parthenogenic Development in Equine Oocytes / G. Carneiro, P. Lorenzo, C. Pimentel, L. Pegoraro, M. Bertolini, B. Ball, G. Anderson, I. Liu // Biology of reproduction. — 2001. — V. 65. — P. 899–905.
10. Somfai T. Diploid porcine parthenotes produced by inhibition of first polar body extrusion during in vitro maturation of follicular oocytes / T. Somfai, M. Ozawa, J. Noguchi, H. Kaneko, K. Ohnuma, N. W. Karja, M. Fahrudin, N. Maedomari, A. Dinnyes, T. Nagai, K. Kikuchi // Reprod. — 2006. — V. 132(4). — P. 559–570.
11. Yoshida M. Blastocyst formation by pig embryos resulting from in-vitro fertilization of oocytes matured in vitro / M. Yoshida, Y. Ishizaki, H. Kawagishi // J Reprod. Fertil. — 1990. — V. 88. — P. 1–8.
12. Zuo Z. The effects of glycine-glutamine dipeptide replaced l-glutamine on bovine parthenogenetic and IVF embryo development / Z. Zuo, Z. Niu, Z. Liu, J. Ma, P. Qu, F. Qiao, J. Su, Y. Zhang, Y. Wang. // Theriogenology. — 2020. — V. 141. — P. 82-90. doi: 10.1016/j.theriogenology.2019.09.005.
13. Platonov E. S. The influence of growth factors FGF4, TGFa and TGFp 1 on the development of parthenogenetic mouse embryos C57BL / 6 / E.S. Platonov, L. I. Penkov, B. D. Dimitrov, O. V. Mironova, B. V. Konyukhov // Ontogenesis. — 2005. — V. 36(2). — P. 144–149.
14. Kono T. Birth of parthenogenetic mice that can develop to adulthood / T. Kono, Y. Obata, Q. Wu // Nature. — 2004. — V. 428(6985). — P. 860–864.
15. Smith L. C. Epigenetic consequences of artificial reproductive technologies to the bovine imprinted genes SNRPN, H19/IGF2, and IGF2R / L. C. Smith, J. Therrien, F. Filion, F. Bressan, F. V. Meirelles // Frontiers in Genetics. — 2015. — V. 6(58). doi: 10.3389/fgene.2015.00058.
16. Kuzmina T. I. Biotechnology for production of cattle embryos in vitro (guidelines) / T. I. Kuzmina, V. A. Bagirov, A. V. Egiazaryan, H. Alm, H. Torner // St. Petersburg-Pushkin. — 2009. — P. 44.
17. Ernst L. K., Golubev A. K., Kudryavtsev I. V., Kuzmina T. I. et al. A method of obtaining of parthenogenetic embryos. USSR patent No. 1086808. 1983.
18. Alm H. Bovine Blastocyst Development Rate in vitro Is Influenced by Selection of Oocytes by Brilliant Cresyl Blue Staining Before IVM as Indicator for Glucose 6 Phosphate Dehydrogenase activity / H. Alm, H. Torner, B. Lohrke, et al. // Theriogenology. — 2005. — V. 63. — P. 2194–2205.
19. Tarkowski A. An air-drying method for chromosomal preparation from mouse eggs / A. Tarkowski // Cytogenetic. — 1966. — ‹ 1. — P. 394–400.
Review
For citations:
Kuzmina T., Alm H. Competence to induced partenogenesis of Bos Taurus oocytes, depending on the gamete functional status and its origin (follicle diameter). Genetics and breeding of animals. 2020;(1):15-21. (In Russ.) https://doi.org/10.31043/2410-2733-2020-1-15-21